Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0482422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154721

RESUMO

Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Endófitos/fisiologia , alfa-Manosidase/metabolismo , alfa-Manosidase/farmacologia , Magnaporthe/metabolismo , Doenças das Plantas , Parede Celular
2.
J Agric Food Chem ; 70(23): 6993-7003, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667655

RESUMO

Endophytes can benefit the growth and stress resistance of host plants by secreting bioactive components. Thiamine is an essential vitamin involved in many metabolic pathways and can only be synthesized by microbes and plants. In this study, we found that thiamine could inhibit the development of the phytopathogen Magnaporthe oryzae and decrease the rice blast index under field conditions. In the thiamine biosynthesis pathway, the key enzyme ShTHIC of an endophyte Streptomyces hygroscopicus OsiSh-2 and OsTHIC of rice (Oryza sativa) were highly homologous. Gene overexpression or knockout approaches revealed that both THIC contributed to thiamine synthesis and resistance to M. oryzae. Furthermore, S. hygroscopicus OsiSh-2 colonization led to a decrease in the thiamine synthesis level of rice but still maintained thiamine homeostasis in rice. However, inoculation with the ShTHIC knockout strain ΔTHIC reduced the thiamine content in rice, although the thiamine synthesis level of rice was increased. After infection with M. oryzae, blast resistance was dramatically improved in OsiSh-2-inoculated rice but decreased in ΔTHIC-inoculated rice compared with non-inoculated rice. This result demonstrated that ShTHIC could regulate thiamine biosynthesis and consequently assist blast resistance in the OsiSh-2-rice symbiont. Our results revealed a novel blast-resistance mechanism mediated by a key thiamine biosynthetic enzyme from an endophyte OsiSh-2.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Endófitos/genética , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Tiamina/metabolismo
3.
Front Plant Sci ; 13: 874819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646017

RESUMO

Banana (Musa spp.) is an important fruit crop cultivated in most tropical countries. Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the most destructive fungal disease. Biocontrol using endophytic microorganisms is considered as a safety and sustainable strategy. Actinomycetes have a potential for the production of diverse metabolites. Isolation of endophytic actinomycetes with high efficiency and broad-spectrum antagonism is key for exploring biocontrol agents. Our previous study showed that a total of 144 endophytic actinomycetes were isolated from different tissues of medicinal plants in Hainan, China. Especially, strain 8ZJF-21 exhibited a broad-spectrum antifungal activity. Its morphological, physiological, and biochemical characteristics were consistent with the genus Streptomyces. The phylogenetic tree demonstrated that strain 8ZJF-21 formed a distinct clade with Streptomyces malaysiensis. Average nucleotide identity (ANI) was 98.49% above the threshold of novel species. The pot experiment revealed that endophytic Streptomyces malaysiensis 8ZJF-21 could improve the plant resistance to Foc TR4 by enhancing the expression levels of defense-related and antioxidant enzyme genes. It also promoted the plant growth by producing several extracellular enzymes and metabolites. Antifungal mechanism assays showed that S. malaysiensis 8ZJF-21 extract inhibited mycelial growth and spore germination of Foc TR4 in vitro. Pathogenic cells occurred cytoplasmic heterogeneity, disappeared organelles, and ruptured ultrastructure. Sequencing and annotation of genome suggested that S. malaysiensis 8ZJF-21 had a potential of producing novel metabolites. Nineteen volatile organic compounds were obtained from the extract by Gas Chromatography-Mass Spectrometry (GC-MS). Hence, endophytic Streptomyces strains will become essential biocontrol agents of modern agricultural practice.

4.
Int. microbiol ; 25(1): 133-152, Ene. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216018

RESUMO

In the present work, the extensive biological activities of marine endophytic Streptomyces strains isolated from marine soft coral Sarcophyton convolutum have been demonstrated. Within fifty-one Streptomyces isolates evaluated for their hydrolytic enzymes and enzyme inhibitors productivities, six isolates showed the hyperactivities. Pharmaceutical metabolites productivities evaluated include enzymes (alkaline protease, L-asparaginase, L-glutaminase, tyrosinase, and L-methioninase) and enzyme inhibitors (inhibitors of α-amylase, hyaluronidase, β-lactamase, α-glucosidase, and β-glucosidase). These isolates were identified based on their morphological, biochemical, and genetic characteristics as Streptomyces sp. MORSY 17, Streptomyces sp. MORSY 22, Streptomyces sp. MORSY 25, Streptomyces sp. MORSY 36, Streptomyces sp. MORSY 45, and Streptomyces sp. MORSY 50. Moreover, in further evaluation, these strains exhibited wide spectrum of antimicrobial (against bacteria and fungi), antiviral (against hepatitis C virus), antibiofilm against biofilm-forming bacteria (methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas species), and anti-proliferative activities (against liver and colon carcinoma cell lines). The GC–MS analysis of the hyperactive strains MORSY 17 and MORSY 22 revealed the presence of different bioactive agents in the ethyl acetate extract of both strains.(AU)


Assuntos
Humanos , Endófitos , Anticorpos Anti-Hepatite C , Anti-Infecciosos , Enzimas , Streptomyces , Microbiologia
5.
Int Microbiol ; 25(1): 133-152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34427819

RESUMO

In the present work, the extensive biological activities of marine endophytic Streptomyces strains isolated from marine soft coral Sarcophyton convolutum have been demonstrated. Within fifty-one Streptomyces isolates evaluated for their hydrolytic enzymes and enzyme inhibitors productivities, six isolates showed the hyperactivities. Pharmaceutical metabolites productivities evaluated include enzymes (alkaline protease, L-asparaginase, L-glutaminase, tyrosinase, and L-methioninase) and enzyme inhibitors (inhibitors of α-amylase, hyaluronidase, ß-lactamase, α-glucosidase, and ß-glucosidase). These isolates were identified based on their morphological, biochemical, and genetic characteristics as Streptomyces sp. MORSY 17, Streptomyces sp. MORSY 22, Streptomyces sp. MORSY 25, Streptomyces sp. MORSY 36, Streptomyces sp. MORSY 45, and Streptomyces sp. MORSY 50. Moreover, in further evaluation, these strains exhibited wide spectrum of antimicrobial (against bacteria and fungi), antiviral (against hepatitis C virus), antibiofilm against biofilm-forming bacteria (methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas species), and anti-proliferative activities (against liver and colon carcinoma cell lines). The GC-MS analysis of the hyperactive strains MORSY 17 and MORSY 22 revealed the presence of different bioactive agents in the ethyl acetate extract of both strains.


Assuntos
Antozoários , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Filogenia , Streptomyces/genética
6.
Microb Cell Fact ; 20(1): 217, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863154

RESUMO

BACKGROUND: Endophytic actinomycetes, as emerging sources of bioactive metabolites, have been paid great attention over the years. Recent reports demonstrated that endophytic streptomycetes could yield compounds with potent anticancer properties that may be developed as chemotherapeutic drugs. RESULTS: Here, a total of 15 actinomycete-like isolates were obtained from the root tissues of Lilium davidii var. unicolor (Hoog) Cotton based on their morphological appearance, mycelia coloration and diffusible pigments. The preliminary screening of antagonistic capabilities of the 15 isolates showed that isolate LRE541 displayed antimicrobial activities against all of the seven tested pathogenic microorganisms. Further in vitro cytotoxicity test of the LRE541 extract revealed that this isolate possesses potent anticancer activities with IC50 values of 0.021, 0.2904, 1.484, 4.861, 6.986, 8.106, 10.87, 12.98, and 16.94 µg/mL against cancer cell lines RKO, 7901, HepG2, CAL-27, MCF-7, K562, Hela, SW1990, and A549, respectively. LRE541 was characterized and identified as belonging to the genus Streptomyces based on the 16S rRNA gene sequence analysis. It produced extensively branched red substrate and vivid pink aerial hyphae that changed into amaranth, with elliptic spores sessile to the aerial mycelia. To further explore the mechanism underlying the decrease of cancer cell viability following the LRE541 extract treatment, cell apoptosis and cell cycle arrest assays were conducted in two cancer cell lines, RKO and 7901. The result demonstrated that LRE541 extract inhibited cell proliferation of RKO and 7901 by causing cell cycle arrest both at the S phase and inducing apoptosis in a dose-dependent manner. The chemical profile of LRE541 extract performed by the UHPLC-MS/MS analysis revealed the presence of thirty-nine antitumor compounds in the extract. Further chemical investigation of the LRE541 extract led to the discovery of one prenylated indole diketopiperazine (DKP) alkaloid, elucidated as neoechinulin A, a known antitumor agent firstly detected in Streptomyces; two anthraquinones 4-deoxy-ε-pyrromycinone (1) and epsilon-pyrromycinone (2) both displaying anticancer activities against RKO, SW1990, A549, and HepG2 with IC50 values of 14.96 ± 2.6 - 20.42 ± 4.24 µg/mL for (1); 12.9 ± 2.13, 19.3 ± 4.32, 16.8 ± 0.75, and 18.6 ± 3.03 µg/mL for (2), respectively. CONCLUSION: Our work evaluated the anticarcinogenic potential of the endophyte, Streptomyces sp. LRE541 and obtained one prenylated indole diketopiperazine alkaloid and two anthraquinones. Neoechinulin A, as a known antitumor agent, was identified for the first time in Streptomyces. Though previously found in Streptomyces, epsilon-pyrromycinone and 4-deoxy-ε-pyrromycinone were firstly shown to possess anticancer activities.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Endófitos/química , Lilium/microbiologia , Streptomyces/química , Streptomyces/genética , Actinobacteria , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
7.
Crit Rev Microbiol ; 46(6): 750-758, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33044894

RESUMO

The strains of actinobacteria are unique as they lie between true fungi and bacteria and several of them were reported as endophytic actinobacteria as they were isolated from the inner regions of various plant parts and will enhance uptake of nutrients and improve defense against pathogens. Literature and scientific communications reported the relationship between the endophytes and plants, most of them concluded the association as commensalism. Remarkably, bioactive compounds from endophytic Streptomyces sp. were confirmed with various applications. A retrospective consolidation on the endophytic Streptomyces sp. and their metabolite application in day to day life is presented here. It was deduced that this group of the organism are a source for a wide range of bioactive compounds including anticancer agents, immune suppressor, plant growth promoters, anti-inflammatory agents, anti-tumor agents, enzymes and antimicrobial substances. These antimicrobial metabolites show broad-spectrum activity and are effective against bacteria and fungi. The mechanism of action of secondary metabolites from endophytes and its positive influence on the host plants are noted as involvement in deterrence, antifeedant activity, toxicity against common pests, and as enhancers for physical mechanisms such as water uptake and sunlight absorption, thus supporting the growth of host plants.


Assuntos
Endófitos/química , Endófitos/metabolismo , Plantas/microbiologia , Streptomyces/química , Streptomyces/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Humanos
8.
PeerJ ; 8: e8582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195043

RESUMO

Sustainable agriculture is needing economic applications for disease control. One possibility is offered by local medical plants. Endophytes of medical plants, such as actinomycetes Streptomyces sp. have previously shown antagonistic activities against fungal phytopathogens. In the present field experiment, we aimed to verify the efficiency of endophytic Streptomyces against one of the common pathogens, Botrytis cinerea, causing chocolate spot disease for faba bean (Vicia fabae L.). We tested two strains of Streptomyces (MG788011, MG788012) and three techniques to apply the biocontrol agent: (1) coating the seeds with spores, (2) spraying mycelia and (3) spraying the crude metabolites over the plants. The technique using the crude metabolites was the most efficient to prevent the disease symptoms. Both of the endophytic strains diminished the disease symptoms and improved the plant growth. The study offers a potential biological control technique to prevent chocolate spot disease and, at the same time, increase the yields of faba bean in sustainable agriculture.

9.
Biol Trace Elem Res ; 195(2): 707-724, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31486967

RESUMO

In this study, metabolites involved in the free-biomass filtrates for three endophytic actinomycetes of Streptomyces capillispiralis Ca-1, Streptomyces zaomyceticus Oc-5, and Streptomyces pseudogriseolus Acv-11 were used as biocatalysts for green synthesis of silver nanoparticles (Ag-NPs). Characterization of biosynthesized Ag-NPs was accomplished using UV-Vis spectroscopy, X-ray diffraction patterns (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), and particle size analyzer. The biosynthesized Ag-NPs showed maximum surface plasmon resonance (SPR) at 440 for strain Ca-1 and 450 for both strains of OC-5 and Acv-11. Nanoparticle spherical shape was recorded with size ranging from 23.77 to 63.14 nm, 11.32 to 36.72 nm, and 11.70 to 44.73 nm for Ca-1, Oc-5, and Acv-11, respectively. SEM-EDX analysis exhibited the weight percentages of 17.3, 22.3, and 48.7% for Ag-NPs synthesized by strains Ca-1, Oc-5 and Acv-11, respectively. The activities of biosynthesized Ag-NPs were concentration dependent and the obtained results confirmed the efficacy of Ag-NPs as antimicrobial agents against Gram-positive and Gram-negative bacteria as well unicellular and multicellular fungi. The MIC for Gram-positive bacteria, Gram-negative bacteria (E. coli), and eukaryotic microorganisms was 0.25 mM with clear zone ranging from 10.3 to 14.6 mm, while MIC for Pseudomonas aeruginosa was 1.0 mM for Ag-NPs synthesized by strain Ca-1 and 0.25 mM for those synthesized by strains Oc-5 and Acv-11. Moreover, Ag-NPs exhibited antimicrobial activity against four plant pathogenic fungi represented by Alternaria alternata, Fusarium oxysporum, Pythium ultimum, and Aspergillus niger at 2.0, 1.5, 1.0, and 0.5 mM of Ag-NPs with different degree. In vitro assessment of the antioxidant efficacy of biosynthesized Ag-NPs was achieved by scavenging assay of H2O2, reducing power of Fe3+, or total antioxidant assay. The results showed that antioxidant activities of Ag-NPs were concentration dependent with the highest activity at Ag-NP concentration of 2.0 mM. Furthermore, the biosynthesized NPs have prospective bioinsecticidal activity against Culex pipiens and Musca domestica. Green synthesis of NPs could be quite potential for the development of new bioactive compounds used in different biomedical applications.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Inseticidas/farmacologia , Streptomyces/química , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Culex/efeitos dos fármacos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Moscas Domésticas/efeitos dos fármacos , Inseticidas/química , Inseticidas/metabolismo , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Prata/química , Prata/metabolismo , Prata/farmacologia , Streptomyces/metabolismo
10.
World J Microbiol Biotechnol ; 35(7): 97, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222457

RESUMO

Endophytic Streptomyces sp. SSD49 inhibited eight pathogens, including the human opportunistic pathogenic microorganisms, the plant pathogenic fungi and bacteria. The growth of soybeans, tomatoes, peppers and Populus tomentosa seedings inoculated with SSD49 are remarkably promoted. Here, we constructed two P. tomentosa seedling microRNA (miRNA) libraries inoculated with (PS30d) and without SSD49 (PC30d) to explore the molecular regulatory roles in the plant response to the beneficial bacteria. Totals of 314 known and 144 novel miRNAs were identified, among which 27 known and 11 novel miRNA had significantly different expression. The targets of up-regulated miR160, miR156, ptc114 and down-regulated miR319 and other differential expressed miRNAs primarily regulated genes encoding transcription factors (auxin response factor, small auxin-up RNA, and GRAS proteins), disease resistance proteins, phytohormone oxidase, and response regulators, which could promote plant growth, influence disease resistance and miRNA biosynthesis in P. tomentosa. This is the first report on the genome-wide identification of biocontrol endophytic Streptomyces inoculation-responsive miRNAs using small RNA sequencing in P. tomentosa and these findings provide new insight into understanding the biocontrol effects of endophytic Streptomyces.


Assuntos
MicroRNAs/genética , Reguladores de Crescimento de Plantas , Populus/genética , RNA de Plantas/isolamento & purificação , Streptomyces/metabolismo , Agentes de Controle Biológico , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Populus/microbiologia , RNA de Plantas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de RNA
11.
J Biol Inorg Chem ; 24(3): 377-393, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30915551

RESUMO

In this study, two endophytic actinomycetes isolates Oc-5 and Acv-11, were isolated from healthy leaves of medicinal plant Oxalis corniculata L. These isolates were identified as Streptomyces zaomyceticus Oc-5 and Streptomyces pseudogriseolus Acv-11 using 16S rRNA gene sequence. Biomass extract of these strains were used as a greener attempt for synthesis of copper oxide nanoparticles (CuO-NPs). The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infra-red (FT-IR) spectroscopy, X-ray diffraction (XRD)' transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). Green synthesized NPs showed surface plasmon resonance (SPR) absorption band at 400 nm, crystalline nature, spherical-shaped with an average size of 78 nm and 80.0 nm for CuO-NPs synthesized using strain Oc-5 and Acv-11, respectively. The bioactivities of CuO-NPs were evaluated. Results revealed that CuO-NPs exhibited promising antimicrobial activity against prokaryotic and eukaryotic microbial cells (Gram positive bacteria, Gram negative bacteria, unicellular and multicellular fungi). In addition, it showed antimicrobial potential against phyto-pathogenic fungal strains Fusarium oxysporum, Pythium ultimum, Aspergillus niger and Alternaria alternata. We further explored the in vitro antioxidant activity and cytotoxicity for biosynthesized CuO-NPs. The results revealed that' scavenging and total antioxidant activity for NPs synthesized using Streptomyces pseudogriseolus Acv-11 was better than those synthesized by Streptomyces zaomyceticus Oc-5. Also, the morphological changes and cell viability for Vero and Caco-2 cell line due to NPs treatments were assessed using MTT assay method. Furthermore, Larvicidal efficacy against Musca domestica and Culex pipiens was evaluated. The results obtained in this study clearly showed that biosynthesized CuO-NPs exhibited effective bioactivity and, therefore, provide a base for the development of versatile biotechnological applications soon.


Assuntos
Anti-Infecciosos/farmacologia , Cobre/farmacologia , Sequestradores de Radicais Livres/farmacologia , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Streptomyces/metabolismo , Animais , Anti-Infecciosos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Biotecnologia/métodos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cobre/química , Cobre/toxicidade , Culex/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Moscas Domésticas/efeitos dos fármacos , Humanos , Inseticidas/metabolismo , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/efeitos dos fármacos , Oxalidaceae/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/isolamento & purificação , Células Vero
12.
Microbes Environ ; 32(2): 133-141, 2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28515390

RESUMO

In the present study, 77 strains of endophytic actinomycetes isolated from cabbage were screened in order to assess their biocontrol potential against Alternaria brassicicola on cabbage seedlings. In the first and second screening trials, cabbage seedlings pretreated with mycelial suspensions of each isolate were spray-inoculated with A. brassicicola. Strain MBCN152-1, which exhibited the best protection in screening trials and had no adverse effects on seedling growth, was selected for the greenhouse trial. In the greenhouse trial, cabbage seedlings, which had been grown in plug trays filled with soil mix containing spores of MBCN152-1 (1×108 spores g-1 of soil mix), were spray-inoculated with A. brassicicola and grown in greenhouse conditions. MBCN152-1 reduced disease incidence and significantly increased the number of viable seedlings. The efficacy of MBCN152-1 against damping-off caused by seed-borne A. brassicicola was then evaluated. Cabbage seeds, artificially infested with A. brassicicola, were sown in soil mix containing MBCN152-1 spores. The disease was completely suppressed when infested seeds were sown in a soil mix blended with MBCN152-1 at 1.5×107 spores g-1 of soil mix. These results strongly suggest that MBCN152-1 has the potential to control A. brassicicola on cabbage plug seedlings. MBCN152-1 was identified as a Streptomyces humidus-related species based on 16S rDNA sequencing. Scanning electron microscopy showed that the hyphae of MBCN152-1 multiplied on the surface of the seedlings and penetrated their epidermal cells. In conclusion, strain MBCN152-1 is a promising biocontrol agent against A. brassicicola on cabbage plug seedlings.


Assuntos
Alternaria/patogenicidade , Agentes de Controle Biológico , Brassica/microbiologia , Doenças das Plantas/prevenção & controle , Streptomyces , Doenças das Plantas/microbiologia , Plântula
13.
Pol J Microbiol ; 65(3): 319-329, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-29334064

RESUMO

The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.


Assuntos
Antibiose , Endófitos/isolamento & purificação , Doenças das Plantas/prevenção & controle , Streptomyces/isolamento & purificação , Theaceae/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/fisiologia , Fusarium/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...